EdData II
Education Data for Decision Making

Numeracy Counts: The Early Grade Math Assessment (EGMA)

March 25, 2009

About the Presentation

- This presentation was prepared for the Comparative and International Education Society (CIES) annual meeting, Charleston, South Carolina, March 25, 2009.
- The Early Grade Math Assessment (EGMA) is an instrument designed to measure the extent to which schoolchildren in early primary grades are learning math skills.
- The work described here is being carried out under the United States Agency for International Development's (USAID' s) EdData II project, led by RTI International. EGMA is part of EdData II Task Order Number 2, EHC-E-02-04-00004-00.

Why Math?

- Used every day
- Increased focus by U.S. Department of Education
- Jobs require math
- Competitive job market

Differences in Math Scores

Developed countries compared to Africa

Why an EGMA?

- Early assessment
- Quick, efficient (15 min.)
- Research-based
- Cost effective
- Increases awareness

Essential Components: What do we know?

	US NAEP	TIMSS	South Africa	Jamaica
 Operations	X	X	X	X
Measurement	X	X	X	X
Geometry	X	X	X^{1}	X^{1}
Data Analysis/Data Handling	X	X	X	X
Algebra	X	X^{2}	X^{3}	X^{3}

[^0]NAEP = National Assessment of Educational Progress; TIMSS = Trends in International Mathematics and Science Study

Essential Components: Number and Operations National Council of Teachers of Mathematics

Grade Level	Goal
Prekindergarten	- Whole numbers - Counting, cardinality, comparison
Kindergarten	- Represent, compare, order whole numbers - Join, separate sets of objects
First grade	- Understand addition, subtraction - Strategies for basic addition, subtraction facts
Second grade	- Understand - Base-ten numeration - Place-value concepts (fluency with multi-digit addition, subtraction)

Essential Components: Number and Operations

Objectives for kindergarten through second grade:

- Similarities across countries
- Examples: Know, use number names, symbols; compare, order sets of objects
- Within a country can vary across states, schools
- Examples: Estimate quantities, join, separate objects
- Across countries can vary
- Examples: Use of symbols (<, =, >), identify odd, even numbers

Essential Components: Number and Operations

End of Second Grade							
Description	North Carolina	Texas	San Francisco	Kenya ${ }^{1}$	South Africa ${ }^{2}$	Jamaica	Botswana ${ }^{3}$
Single-digit addition	X	X	X	X	X	X	X
Read, write addition equations	X	X	X	X	X	X	X
Single-digit subtraction	X	X	X	X	X	X	X
Read, write subtraction equations	X	X	X	X	X	X	X

[^1]
Essential Components: Geometry National Council of Teachers of Mathematics

School Year	Overall Goals
Prekindergarten	$\bullet \quad$Identify shapes Kindergarten
• Describe spatial relationships	
First grade	\bullet Comporibe shapes, space
Second grade	

Essential Components: Geometry

Objectives - kindergarten through second grade:

- Similarities across countries
- Recognize, name two-dimensional shapes (triangles, rectangles, circles)
- Recognize, name three-dimensional shapes (spheres, cones, cylinders)
- Differences across countries
- Develop spatial awareness (communicate location of objects in relation to surroundings)
- Combine shapes to make new shapes
- Explore shape attributes

Essential Components: Children’s Knowledge

EGMA Contents

Number and Operations

- Oral Counting Fluency
- One-to-One Correspondence
- Number Naming Fluency
- Quantity Discrimination
- Number Line Estimation
- Word Problems
- Addition and Subtraction

EGMA Contents

Geometry

- Shape Recognition
- Shape Attributes
- Pattern/Number Extension

Counting Tasks: One-to-One Correspondence

Represents collection of objects through application of number words.

- Child needs
- Knowledge of number-word sequence.
- To keep track of each counted, uncounted objecttagging.
- To coordinate two processes at once.

Snapshot of Counting: One-to-One Correspondence

TASK 2: COUNTING: ONE-TO-ONE CORRESPONDENCE - PRACTICE ITEM

MATERIALS: SHEET "A"
STOP RULE: STOP THE CHILD IF S/HE DOUBLE COUNTS A CIRCLE, INCORRECTLY COUNTS A CIRCLE,
OR IF TIME ON THE STOPWATCH RUNS OUT
SCORING: RECORD 1) THE LAST SPOKEN CORRECT NUMBER AND 2) THE RESPONSE THE CHILD GIVES
TO YOUR FOLLOW UP QUESTION
DIRECTIONS: PLACE SHEET "A" WITH THE FOUR CIRCLES IN FRONT OF THE CHILD.
SWEEP YOUR HAND FROM LEFT TO RIGHT OVER THE CIRCLES AND SAY: Here are some circles. I want
you to point and count these circles for me.
POINT TO FIRST CIRCLE AND SAY: Start here and count the circles.
HOW MANY CIRCLES DID THE CHILD COUNT:
IF THE CHILD DOES NOT SAY THE NUMBER AFTER COUNTING THE CIRCLES SAY: How many circles are
there?
IF CHILD DOES NOT RESPOND OR RESPONDS WITH THE INCORRECT ANSWER, COUNT THE CIRCLES
OUT LOUD, POINTING TO EACH ONE AND SAY: One, two, three, four, there are four circles. Now you count
the circles.
IF THE CHILD DOES NOT SAY THE NUMBER OF CIRCLES AFTER COUNTING THEM, SAY: How many
circles are there?
IF CHILD SAYS "FOUR" SAY: That's right, four. Let's do another one.
IF CHILD DOES NOT SAY "FOUR" SAY: There are four, let's do another one.

Quantity Discrimination

- Ability to make judgments about differences
- Use of mental number line
- Ability to make magnitude comparisons
- Children will demonstrate
- Knowledge of communicating the bigger number
- Understanding of where numbers are positioned on a number line

Snapshot of Quantity Discrimination

TASK 4: QUANTITY DISCRIMINATION MEASURE - EXERCISE ONE

Addition/Subtraction Problems

- Children start school with some basic knowledge of addition and subtraction concepts.
- With age and experience, perception of difficulty for addition and subtraction problems and strategies used in solving them change ${ }^{1}$
- Children who are able to do the previous skills, such as counting and quantity discrimination, will demonstrate some knowledge of these skills.

[^2]
Snapshot of Addition/Subtraction

TASK 7: ADDITION/SUBTRACTION PROBLEMS - PRACTICE ITEMS

MATERIALS: SHEET "F1", AND COUNTERS
STOP RULE: STOP THE CHILD FROM CONTINUING IF S/HE GETS 4 ERRORS ONE RIGHT AFTER THE OTHER
SCORING: ENTER CHILD'S ANSWER ON THE LINE FOR EACH ITEM. CIRCLE "0" IF ANSWER WAS INCORRECT. CIRCLE "1' IF ANSWER WAS CORRECT. FOR EACH OF THE QUESTIONS: IF THE CHILD DOES NOT RESPOND, CIRCLE THE NR. IF THE CHILD REFUSES TO ANSWER, CIRCLE THE RF. IF THE CHILD SAYS THAT HE OR SHE DOES NOT KNOW, CIRCLE THE DK.
DIRECTIONS: PLACE THE COUNTERS TO THE SIDE OF THE CHILD. PLACE SHEET "F" IN FRONT OF THE CHILD. IF THE CHILD DOES NOT RESPOND FOR AN ITEM, REPEAT THE QUESTION ONCE, WAIT THREE SECONDS AND MOVE ON TO THE NEXT ITEM. RECORD THE SCORES BELOW.

PRACTICE ITEM ONE:

SAY: Now we are going to do some addition and subtraction problems.
POINT TO THE COUNTERS AND SAY: Here are some things you can use to answer these questions. POINT TO THE FIRST ADDITION PROBLEM ON SHEET F1 AND SAY: How much is $\mathbf{1}$ and $\mathbf{2}$ altogether? IF THE CHILD CORRECTLY ANSWERS " 3 ", SAY: That's right, one and two altogether is three. Let's do another one.
IF THE CHILD DOES NOT CORRECTLY ANSWER, SAY: The answer is three. USE THE COUNTERS AND READ THE PROBLEM DEMONSTRATING BY PUSHING ONE COUNTER TO THE CHILD AND SAY: This is one. THEN PUSHING TWO COUNTERS TOWARD THE CHILD AND SAY: This is two. COUNT ALL THREE COUNTERS ALOUD AND SAY: One and two altogether is three. Let's do another one.

Geometry: Shape Recognition

- Children bring a level of informal geometry skills such as perception of shape and space to school
- Formal schooling provides opportunities to build on existing knowledge as children:
- Learn about their surroundings
- Learn how to communicate their position in relation to these surroundings

Snapshot of Shape Recognition

TASK 8: SHAPE RECOGNITION
MATERIALS: SHEETS "G1" THROUGH "G4"
STOP RULE: N/A
SCORING: THE CORRECT SHAPES ARE MARKED WITH A PATTERN OF DOTS ON THEM. FOR EACH CORRECT SHAPE THE CHILD IDENTIFIES, HE OR SHE GETS A POINT. ENTER THE SCORE ON THE LINE THAT FOLLOWS EACH FIGURE.
DIRECTIONS: FOR EACH OF THE SHAPES BELOW, ONCE THE CHILD FINISHES PLACING THE COUNTERS ON TOP OF THE SHAPE SHEET, MARK THE SHAPES WITH A " \downarrow " ON YOUR SHEET. THEN, RECORD THE NUMBER OF SHAPES THAT WERE COUNTED CORRECTLY. MAKE SURE TO FOLLOW THESE INSTRUCTIONS FOR EACH SHAPE SHEET PRESENTED TO THE CHILD.

SAY: Now we are going to play another game with shapes.

PLACE THE COUNTERS TO THE SIDE OF THE CHILD.
POINT TO THE COUNTERS AND SAY: I want you to place the counters on all of the circles you find on this sheet. PLACE THE SHEET IN FRONT OF THE CHILD. Let me know when you are done.

SHEET G1: CIRCLES

Next Steps

Literature review

Draft development of items

Meeting with experts

Continued development of items
Identification of potential cnintrips
Working with identified countries

Piloting the Instrument

- Working with Ministry of Education
- Train assessors
- Collect data
- Review and report data collected

Questions

THANK YOU!

For more detailed information go to: www.eddataglobal.org

[^0]: ${ }^{1}$ In South Africa and Jamaica this is referred to as Shape \& Space.
 ${ }^{2}$ The TIMSS algebra content for the fourth grade is known as patterns and relationships.
 ${ }^{3}$ This is categorized in South Africa and Jamaica as Pattern \& Algebra.

[^1]: ${ }^{1}$ Objective is to work with single-digit addition and subtraction equations up to 99 .
 ${ }^{2}$ For addition and subtraction learning, objective is to work with whole numbers and solutions to at least 34 .
 ${ }^{3}$ Works with numbers up to 20.

[^2]: ${ }^{1}$ Siegler, R. S. (2003). Implications of cognitive science research for mathematics education. In Kilpatrick, J., Martin, W. B., \& Schifter, D. E. (Eds.), A research companion to principles and standards for school mathematics (pp. 219-233). Reston, VA: National Council of Teachers of Mathematics.

